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The so-called conservative or flw form of the finite difference formulation of con- 
vection terms is shown to be inadequate for preventing nonlinear instability in some cases. 
A preferred scheme for the convection terms which has the property of absolute spatial 
conservation is obtained. Illustrative examples are given for (i) the Navier-Stokes 
equations; (ii) a forced convection equation; and (iii) a Burger’s type equation. 

1. INTRODUCTION 

Early investigations of long-term time integrations involving nonlinear 
convection terms revealed the presence of a weak instability that eventually led to 
meaningless results. The instability could not be cured by shortening the time step. 
This so-called nonlinear instability was shown by Phillips [l] to be due to aliasing. 
Arakawa [2] then proved that it is possible to devise forms of the discrete convection 
terms with which the instability does not occur because the aliasing is controlled. 
The principle is that stability can be maintained if the discrete convection form is 
designed so that the integral of the quadratic quantity is conserved (in addition to 
the usual Courant-Friedrichs-Lewy linearized stability condition on the time step 
dt). As nonlinear instability is due to spatial truncation rather than to time trunca- 
tion, our discussion and use of the term “conservation” will refer in the main to 
the spatial aspect of the integration. 

Quadratic conserving forms of the convection terms were given by Arakawa [2] 
for the two-dimensional vorticity equation and by Lilly [3] and Bryan [4] for the 
general primitive form of the hydrodynamic equations. In each of these schemes 
the conservation of quadratic quantities depends on the divergence C@ = V . v 
being identically zero at all stages of the calculation. In some methods of integration 
continuity is identically satisfied through the use of a stream function. However, 
in the primitive equation forms used in the integration methods of, e.g., Harlow 
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and Welch [5] and Williams [6], continuity is not identically satisfied but is main- 
tained at a small value 9, the precise value of which depends on the accuracy to 
which the associated Poisson equation for pressure is solved. Because of this 
nonvanishing value of 52 it is necessary to re-examine the derivation of the discrete 
convection schemes. 

The difference scheme derived will be applicable, in addition to the Navier- 
Stokes equations, to other transport equations with convection terms present. 
Such equations are the induction equations of magnetohydrodynamics, the trans- 
port of “active scalars” such as heat, mass, or solutes in liquids that can influence 
the motion and the transport of “passive scalars” such as tracers and pollutants in 
atmospheric and oceanic flows. 

2. THE FINITE DIFFERENCE EQUATIONS 

Numerical methods for integrating equations involving convection terms are in 
general use. It will be convenient to refer to a typical method, that discussed by 
Williams [6]. In that study the convection terms were written in the standard 
flux form, shown by Bryan [4] to be conserving of quadratic quantities. However, 
it has become apparent that such discrete convection terms do not conserve 
quadratic quantities absolutely, i.e., algebraically. This flux form is not fully 
adequate for prediction methods which involve a process in which the continuity 
variable 9 = V * v is not identically zero. The nonvanishing of 9 limits the validity 
of Bryan’s analysis for this method. 

To illustrate the problem, consider a typical transport equation such as that for 
heat in an adiabatic fluid, 

$ + (v * V) T = 0. 

For a term such as wT, the finite difference expression in standard flux form is 

qw, T) = 6,(wT+), 
where we define the central difference operators 

8,T = [T (z + +) - T (z - +)]/&, 

TZr [T(z+$)+T(z-$)]/2, 

(1) 

(4) 

for the grid system of Fig. 1. AZ is the distance between adjacent T points. (See 
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FIG. 1. The grid point arrangement. 

Williams, Ref. [6], for full details of grid arrangement and boundaries for the 
Navier-Stokes equations.) Upon forming the corresponding temperature variance 
equation the term of Eq. (2) produces a contribution 

T6,(w?;=) = 6, (w q, + f 6, w, 

where we define 

fi=:” T 
( 

AZ 
z+,).T(z+). 

(5) 

The first term on the right side of (5) is in the correct form for the conservation 
of T2. However, the vanishing of the second term, when contributions from the 
other convection components are considered, will depend on the satisfaction of 
local continuity, 9 = 0. In certain numerical schemes such as those Bryan [4] had 
in mind local continuity is achieved and there is no problem. But in methods such 
as that of Harlow and Welch [5] and Williams [6] 9 is a nonvanishing small quan- 
tity. Thus a summation of terms such as (5) over the whole fluid gives a non- 
vanishing contribution 

This term (and its equivalent in the momentum transport equations, etc.) reduces 
the accuracy of the conservation of quadratic quantities and hence the stability of 
the form C, . The conservation by the form C, is dependent upon the value of 9 and 
will therefore be referred to as a conditionally conserving form. Although the 
term (7) appears small it can cause critical problems in computations with null or 
small diffusive terms, as the examples will show. Clearly the problem is best avoided 
by using a difference scheme for the convection that does not have conditional 
conservation. In methods where the Poisson equation is solved by a relaxation 
process the residual 9 is much larger and problems are accentuated. 
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To obtain a convection scheme which has no 9 contribution, we consider a 
second form 

C2(w, T) E ws,T’, (8) 

which is related to the first by the identity 

ws,T’ = &(wT’) - T&w. (9 

The C, form produces a contribution 

(10) 

to the temperature variance integral so that by averaging the two forms C, and 
C, , the 9 contributions to the variance equation can be made to cancel and we 
obtain a form C, which is absolutely conserving, i.e., the conservation is algebraic 
and is independent of the accuracy of the solution. This form is written 

Ca(w, T) = [S,(wT’) + ws,r]/2, (11) 

and it has a simple fundamental form when expressed for the grid arrangement of 
Fig. 1. The form is 

G(w, Th = [w/c+d'~+~ - ww2Td2~z. (12) 

It should be mentioned that the form C, has the disadvantage of introducing 
errors proportional to 9 into the integrals of linear quantities. However, linear 
conservation is not as meaningful or as necessary a requirement for computational 
stability as quadratic conservation. Hence it is recommended that the form C, 
be used both to avoid possible difficulties from arising and to reduce computational 
time, since the expression (12) for C, involves less calculation than that for C, or C, . 

3. ILLUSTRATIVE SOLUTIONS 

In this section we present solutions obtained for three different problems 
involving convection terms. The differences between solutions using the C, and 
C, discrete convection schemes will be examined in each case. Each example 
indicates how the schemes behave for different types of convection. 

Only time integration schemes that are essentially nondamping have been con- 
sidered, i.e., for which linearized stability analysis shows the associated eigenvalues 
to lie on the unit circle. The methods of Lax-Wendroff [7] and Leith [8], and the 
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AD1 method of Douglas [9] in the nonlinear case, were found unacceptable for this 
reason. The commonly known “leap-frog” method [lo] and the lesser known 
“angled-derivative” method [II] were found satisfactory for the purpose of this 
study. 

3.1. Example 1. The NavierStokes Equations 

Solutions were obtained for an inviscid flow by the method given by Williams [6] 
for solving the Navier-Stokes equations. Setting the viscosity to zero places the 
severest test on the numerical formulation and most clearly shows the differences 
between the conditional and absolute conserving schemes. 
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FIG. 2. Initial stream function of Example 1. 
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As an example, we consider the evolution of a cellular flow in an annular gap. 
The flow is assumed to be inviscid and barotropic so that there is no external source 
of energy. Thus the initially imposed kinetic energy should remain constant. How 
well this condition is met by each computational scheme will be a measure of that 
scheme’s behavior. Since the flow is assumed to be axially symmetric, the governing 
equations are 

St3 + C(v, v) = -sr7T, (13) 

stwt + C(v, w) = -8g7, (14) 

9 = ; S,(rv) + s,w = 0, (15) 

where U, IV, rr are the radial velocity, vertical velocity, and pressure, respectively. 
The equations are solved by marching with centered time differences and using the 
continuity equation (15) to give a Poisson equation for the pressure. The full details 
of the grid and boundary arrangement are in the paper by Williams, Ref. [6]. 
The fluid is given initial kinetic energy by specifying a cellular motion, Fig. 2, in 
the r, z plane in terms of normalized coordinates I-‘, z’, 

* = -3 sin2 73-z’ * sin2 ~TTTI’, (16) 

YV = -s,*, l-w = -m/i (17) 

with zero normal velocities at all boundaries. The convection schemes in axially 
symmetric cylindrical polar coordinates are 

qv, w) = ; S,(i#G’ . 6’) + S,(W7), 

(18) 

(19) 

(20) 

(21) 

The averaging in the C, forms is necessitated by the staggered grid and this 
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particular form is chosen as it provides quadratic conservation. The C, forms are 
derived from the C, forms by use of the identity (9). The kinetic energy K is defined 
as the summation of 

(22) 

over all fluid elements centered on the pressure point. The C, forms are given by 
averaging the corresponding C, , C, terms. 

Other parameters of the calculation are (i) the interior radius, a = 2 cm; (ii) 
the outer radius, b = 5 cm; (iii) the depth of the fluid, d = 3 cm. A moderate 
resolution of 20 x 20 grid lengths was used. The accuracy of the solutions can be 
improved by increasing the resolution but our purpose is to display the behavior 
at a given resolution. 

TABLE I 

Total Change in Kinetic Energy for Both Schemes After 50 set Computed at 
Three Values of dt. Initial Kinetic Energy = 4.8882 cgs units. 

Scheme 10,000 x (dt = 0.005) 5000 x (At = 0.010) 1000 x @It = 0.050) 

c3 -0.0054 -0.0101 -0.0295 
Cl +0.1831 +0.1535 +0.1712 

TABLE II 

Variation in kinetic energy for both schemes for At = 0.005 over 20,000 steps. 
Also shown are individual energy components. Initial kinetic energy = 4.8882 cgs units. 

Time Time 
step in set 

.?+VZ 

with C, 
jy1 2 !2W 

with Cs 
AK 

with CI 
AK 

with C, 

0 0 2.3959 2.4923 -0.0000 +0.0000 
2000 10 2.8964 1.9917 -0.ooo1 +0.0170 
4ooo 20 1.7546 3.1332 -0.0004 +0.0338 
6ooo 30 2.2437 2.6438 -0.0007 $0.0308 
8000 40 2.8802 2.0064 -0.0015 -j-O.0428 

10,000 50 2.2297 2.6532 -0.0054 +0.1831 
12,000 60 2.3314 2.5439 -0.0129 +0.4053 
14,000 70 2.5376 2.3300 -0.0206 i-o.4503 
16,000 80 2.4094 2.4523 -0.0265 + 0.4694 
18,000 90 2.3677 2.4879 -0.0327 +0.4125 
20,000 100 2.2832 2.5659 -0.03!90 +0.4354 
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In analyzing the solutions we must first find out how the time truncation of the 
centered time ditferencing affects the solutions so that we can isolate the effects of 
the space truncation errors which are our present concern. To do this solutions 
were obtained for three values of the time step increment d t for the two discrete 
convection forms C, and C, . The results, Table I, show the change in total kinetic 
energy after 50 sets caused by computational sources. All the d t values are below 
the C-F-L linear stability value of 0.15 for this flow. From Table I we conclude 
that errors in energy conservation in using the C, form are due solely to time trunca- 
tion errors and that these errors can be made as small as desired by decreasing At. 
However, the errors with the C, system are effectively independent of At and are 
due to space truncation errors. 
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FIG. 3. Final stream function of Example I. 
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Next, using the smallest At to minimize time truncation effects, we look at solu- 
tions over a large number of steps, Table II. The two components of K show that 
the flow is changing even though the total K remains almost constant. The column 
for C, shows that the time truncation effects are small and that the use of C, leads 
to space truncation errors of an undesirable level. Obviously C, is a preferable 
scheme under the conditions of these solutions. Figure 3 shows the state of the 
stream function at the end of the calculation. 

To estimate under what circumstances the errors caused by using the C, form 
are important, consider the kinetic energy equation that is normally used in the 
Boussinesq equations of natural convection, i.e., 

aK at = ,&(wT) + v(v . V2v) - (v * (v . Vv)) - (v * VT). (23) 

The last two terms are zero for the continuous equations but in the finite difference 
equations they are only zero if the differencing is designed to make them so. In 
general the last two terms are insignificant when compared to the first two terms. 
In the example of Williams [6] using the C, form, the values obtained were of the 
order 10-l, 10-l, lo-‘, and 1O-6 for these terms, respectively. Thus for such calcula- 
tions there is little difference in using either the C, or C, forms. However, when the 
first two energy integrals are small or zero, as is the case in adiabatic, inviscid flow, 
the significance of the last two terms increases. In the example of this section where 
dK is due solely to the latter terms we find that (i) for C, , (v . (v. Vv)) N 1O-s, 
(v - Vrr) - IO-*, and 9 N 1O-9 throughout the calculation but (ii) for C, the 
values of (v.(v.Vv)), (v*V7r), and 9 are 10-5, IO-*, 1O-9 initially, and after 100 set 
they have grown to 1O-2, 10-8, 1O-9, indicating that there is a weak instability in 
the C, convection term. The instability is not present in the C, form and can be 
suppressed in the C, form by the presence of diffusive terms. 

In all the solutions discussed above, the Poisson equation was solved accurately 
to within round-off error. When relaxation procedures are used the above- 
mentioned problems become more acute. 

3.2. Example 2. Forced Convection of a Scalar 
The purpose of Examples 2 and 3 is to illustrate the stability of the C, difference 

operator in cases where B may not be small and where no attempt is made to 
eliminate or control it as the integration proceeds. Similar to the studies by 
Roberts and Weiss [l I] and Crowley [12], we will first consider a typical forced 
convection equation, in particular, adiabatic heat flow. For a prescribed velocity 
field this becomes a linear, variable coefficient, partial differential equation for T, 

aT -= 
at 

-ii(x, 2) * g - ii@, z) * g (24) 
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where 

U(x, z) = sin2 7rx * sin 27rz + rI(x, z), 

W(x, z) = -sin 27-rx * sin2 7~z + r2(x, z), 
(25) 

and the bar indicates that the velocity field is kept constant during the time integra- 
tion. The functions r 1 , r, represent random components whose mean divergence 
a N 1O-2 on a 40 x 40 mesh. The sinusoidal components, though satisfying 
V . v E 0 exactly in their continuous form, fail to satisfy it upon finite differencing 
by errors -lo-‘. Situations in which such calculations are useful occur commonly 
in meteorology and astrophysics, where the passive advection of tracers and pollu- 
tants in the atmosphere, or of magnetic fields in stars, by an experimentally observed 
velocity field needs to be investigated over long times. 

With the help of (1 I), Eq. (24) may be written 

aT 
at= -C&k T) - C,(W, T), (‘W 

and has been integrated on the unit square 0 d x < 1, 0 < z < 1 covered by 
a 40 x 40 mesh of grid points. Two different time iteration methods have been 
applied to (26). These are: 

a. The “leap-frog” method (Richtmyer, Ref. [lo], p. 17), which has a time 
truncation error of O(At2) and a Von Neumann condition of 

associated with it, 

& (T&f1 - T;+) = -C&l, T’) - C&W, T’). (27) 

b. The two-sweep “angled-derivative” method (Roberts and Weiss, Ref. [l 11, 
p. 279) which has a time truncation error of C$4t2/Ax2) and no time step limitation 
associated with it. 

Upsweep (j = 1,2 ,..., J; i = 1, 2 ,..., I), 

T&t1 - T& 

At 
= -C,-(ii, T’) - C,-(E, T3. 

Downsweep (j = J, J - l,..., 1; i = Z, Z - l,..,, l), 

T&+2 - T$;+l 
At 

= -C,+(U, T’+‘) - C3+(W, T’+‘), 

VW 

(2W 
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where we define 

c,-(ii, T’) = (Ui+l,p,jT;+l,j - zq-l,z.jT;+:,j)/2dx, 

Each method of time iteration was repeated with different sizes of the time step 
At (the particular values depending on the stability condition of the method) in 
order to separate the effects of time truncation errors from that associated with the 
divergence 9 and spatial truncation in general. We must also make a remark 
concerning the boundary conditions on T. Since (24) is first order in x and z, we 
may specify T only on two sides of the square, say on x = 0 and z = 0. However, 
the nature of the staggered grid (shown in Fig. 1) upon which scheme C, is built 
precludes the use of the boundary values of T, and the calculations effectively use 
T = 0 on the boundaries. 

As initial conditions, at t = 0, T(x, z) is defined as zero everywhere except on a 
circle of radius r = 0.15 centered at x = 0.35, z = 0.35 in the unit square. On the 
circle the values of T describe a cone, i.e., 

T(x, z) = A[9 - (x - 0.35)2 - (z - 0.35)2]. 

Integrations were carried out for At = 0.0025, 0.010, and 0.040, respectively, 
where the critical At, given by the C-F-L condition is 0.025 (see Table III). 
At tN = 50.0 the integrations were stopped, with the temperature variance deter- 
mined by some schemes increasing monotonically and others oscillating about 
some mean value. It was found best, therefore, to define the following quantities: 

E(t = 0) = E,, = c Tzj(t = 0), 
i.i 

i? = + 5 E(t,), 
?a=1 

(30) 
AE = (a? - EJE,, , E* = E(hYEo , 6E = max 1 E - E. l/E,, 

In those cases where the iterations diverged E* is given, otherwise BE and 6E are 
given. To compute 6E, the initial peak in the energy us time curve is neglected; in 
most cases, 6E corresponds to the amplitude of quasisinusoidal oscillations in E 
superposed on E. 

The results showed that in the case r1 and r2 are set to zero, the same results are 
obtained with the C, and C, schemes to five significant figures. When rl and r2 are 
nonvanishing, C, yields divergent results at t at 35 set but C, remains convergent 
for all values of At < At, . Onacomparison with the results of Example 1, we 
may conclude that linear systems can remain stable with a much larger value of 
B than nonlinear systems. We may note that although linearized stability analysis 
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TABLE III 

Change in Variance Z&c,T,: for Both Schemes After 50 set, at Three Values of At and with Two 
Time Methods when r, , r2 # 0 (ANG = angled-derivative, LF = leap-frog, 

AE, SE, E* given by (30)). 

At = 0.0025 (20,000 steps) At = 0.010 (5000 steps) AZ = 0.040 (1250 steps) 

Time Space 
scheme scheme AE E* 6E AE E* 6E E* 

Cl 2.100 2.100 m 
ANG Ca 0.0013 0.0008 0.0115 0.0052 7 x 105 

Cl 1.990 2.230 
LF 

G 0.0002 0.0000 0.0027 0.0001 - 

predicts stability for the angled-derivative method at dt = 0.040 (1.6 x At,,), 
a slow instability has increased the energy to very large values and the integration 
is clearly blowing up. The source of this instability is in the time truncation errors. 

3.3. Example 3. Two-Component, Inviscid “Burger’s Equation” 

The purpose of this calculation is to illustrate the stability of the C, difference 
operator in highly nonlinear systems in which no restraint is put on 9. Consider 
the case in the calculation of turbulent compressible flows. The system chosen was 
the following: 

au au au 
Tt= -yy-wp 

aw aw at4 -= at -Uax-WaZs 

(314 

Again the initial velocity field is chosen to be that of (25), but now 9, originally 
-lo-‘, will be allowed to vary with time. For boundary conditions we choose the 
normal velocity to vanish at each wall, which provides the four necessary boundary 
conditions for (31). The use of the staggered grid will exclude the tangential veloci- 
ties from entering the calculations. 

As in Example 2, a 40 x 40 mesh is chosen and the staggered grid arrangement 
of Williams [6] is used for the location of u and w values. The leap-frog and angled- 
derivative methods were used for the time integration. However, because of the 
nonlinearities we must further clarify schemes (27) and (28). If in scheme (28) we 

5fW/3-5 
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TABLE IV 

Change in Kinetic Energy for Both Schemes After 25 xc, at Three Values of At and with Two 
Time Methods (ANG = angled-derivative, LF = leap-frog, E* given by (30)). 

At = 0.0005 (50,000 steps) At = 0.0025 (10,000 steps) At = 0.0125 (2000 steps) 

Time Space 
scheme scheme E* E* E* 

c.7 1.000 1.027 2.42 
ANG 

Cl co w w 

c3 1.029 1.304 co 
LF 

Cl co co cc 

replace T by u and w, respectively, and evaluate G and $ (now simply u and w) at 
time level T in both (28a) and (28b), we obtain the angled-derivative analog of (31). 
A similar procedure in (27) will yield the leap-frog analog of (31). 

We must note that the system described by (31) permits discontinuities or shocks, 
but there is no effort made in this paper to study the nature of the solutions, only 
to show that the C, form gives stable numerical solutions even in such cases. 

The integrations were carred out to tN = 25 set, with the results given in Table 
IV. As in Example 2, E* respresents the ratio of final to initial energies [see (3O)J. 
All computations with the C, difference scheme blew up between t N 0.5 
and t N 1.0 sec. By monitoring the total divergence & Z;. 1 V * v lij = 9 present 
in the system it was found that the blow-up of the calculations coincided with 
a sudden large increase in the value of 9 by factors of 106 or larger. The same 
increase in 9 affected the C, integrations only slightly. Part of the divergence 
increase may be attributed to the formation of discontinuities, a genuine effect of 
compressibility, but a large part is due to the appearance of random small scale 
fluctuations which the grid is unable to resolve. The results show that it is possible 
to maintain computational stability even when the flow becomes physically unreal- 
istic, and care must be taken to interpret the results in such cases. 

The effect of the time truncation errors is clearly displayed in the results for the 
C, calculations. With each time method there is an increase in the energy that gets 
bigger with increasing At. 

Somewhat surprisingly, the angled-derivative method has proved superior to the 
leap-frog in this nonlinear problem despite its poor truncation error. Additional 
tests showed that for At = 0.0005 the energy remained unchanged in the fourth 
significant figure even after 100,000 steps, showing that it is possible to devise 
convective difference schemes that conserve in time as well as in space. Admittedly, 
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one has to pay the price in increased computer time, but with the advent of the 
“fourth-generation” computers and reduced cost per arithmetic operation, this 
may not become excessive in the future. 

It is interesting to compare the results of Example 1 and Example 3 as displayed 
in Tables II and IV, respectively. In the former pressure is included and the diver- 
gence is controlled by the method of corrective iteration, and the C, scheme is 
slightly damping, whereas the C, scheme is amplifying. In the latter case both 
schemes are amplifying, with the C, scheme blowing up in a few hundred time 
steps. 

4. CONCLIJSION 

We have shown that quadratic conserving convection schemes can be divided 
into two classes, those of partial conservation and those of absolute conservation. 
The absolute conserving form C, is found to be preferable because it is both 
computationally stable under all situations and more economical to compute due 
to its simpler form. 
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